Karin cluster formation by asteroid impact

نویسندگان

  • David Nesvorný
  • Brian L. Enke
  • William F. Bottke
  • Daniel D. Durda
  • Erik Asphaug
  • Derek C. Richardson
چکیده

Insights into collisional physics may be obtained by studying the asteroid belt, where large-scale collisions produced groups of asteroid fragments with similar orbits and spectra known as the asteroid families. Here we describe our initial study of the Karin cluster, a small asteroid family that formed 5.8± 0.2 Myr ago in the outer main belt. The Karin cluster is an ideal ‘natural laboratory’ for testing the codes used to simulate largescale collisions because the observed fragments produced by the 5.8-Ma collision suffered apparently only limited dynamical and collisional erosion. To date, we have performed more than 100 hydrocode simulations of impacts with non-rotating monolithic parent bodies. We found good fits to the size–frequency distribution of the observed fragments in the Karin cluster and to the ejection speeds inferred from their orbits. These results suggest that the Karin cluster was formed by a disruption of an ≈33-km-diameter asteroid, which represents a much larger parent body mass than previously estimated. The mass ratio between the parent body and the largest surviving fragment, (832) Karin, is ≈0.15–0.2, corresponding to a highly catastrophic event. Most of the parent body material was ejected as fragments ranging in size from yet-to-be-discovered sub-km members of the Karin cluster to dust grains. The impactor was ≈5.8 km across. We found that the ejections speeds of smaller fragments produced by the collision were larger than those of the larger fragments. The mean ejection speeds of >3-km-diameter fragments were ≈10 m s−1. The model and observed ejection velocity fields have different morphologies perhaps pointing to a problem with our modeling and/or assumptions. We estimate that ∼5% of the large asteroid fragments created by the collision should have satellites detectable by direct imaging (separations larger than 0.1 arcsec). We also predict a large number of ejecta binary systems with tight orbits. These binaries, located in the outer main belt, could potentially be detected by lightcurve observations. Hydrocode modeling provides important constraints on the interior structure of asteroids. Our current work suggests that the parent asteroid of the Karin cluster may have been an unfractured (or perhaps only lightly fractured) monolithic object. Simulations of impacts into fractured/rubble pile targets were so far unable to produce the observed large gap between the first and second largest fragment in the Karin cluster, and the steep slope at small sizes (≈6.3 differential index). On the other hand, the parent asteroid of the Karin cluster was produced by an earlier disruptive collision that created the much larger, Koronis family some 2–3 Gyr ago. Standard interpretation of hydrocode modeling then suggests that the parent asteroid of the Karin cluster should have been formed as a rubble pile from Koronis family debris. We discuss several solutions to this apparent paradox. © 2006 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detection of the Yarkovsky effect for main-belt asteroids

The Yarkovsky effect, a non-gravitational acceleration produced by the anisotropic emission of thermal energy (Öpik, 1951, Proc. Roy. Irish Acad. 54, 165–199), plays an important role in the dynamical evolution of asteroids. Current theoretical models of the Yarkovsky effect, however, rely on a number of poorly known parameters that can only approximate how real asteroids respond to solar heati...

متن کامل

Recent Origin of the Solar System Dust Bands

Infrared Astronomical Satellite (IRAS) observations in 1983 revealed the existence of several solar system dust bands. These dust bands are believed to be debris produced by recent disruption events among main-belt asteroids, particularly because dust particles have short dynamical and collisional lifetimes. Using young asteroid families as tracers of recent disruptions in the main belt, we lin...

متن کامل

Young Asteroid 832 Karin shows no rotational spectral variations

We have made near-IR spectral observations of the very young (5.75 Myr) S-type asteroid 832 Karin, well sampled in rotational phase over its 18.35-h period. We find no significant variations in its reflectance spectrum. Karin, the brightest member of the Karin cluster (a sub-family of the larger, older Koronis dynamical family), was shown to be exceptionally young by Nesvorný et al. [Nesvorný, ...

متن کامل

Size–frequency distributions of fragments from SPH/N -body simulations of asteroid impacts: Comparison with observed asteroid families

We investigate the morphology of size–frequency distributions (SFDs) resulting from impacts into 100-km-diameter parent asteroids, represented by a suite of 161 SPH/N -body simulations conducted to study asteroid satellite formation [Durda, D.D., Bottke, W.F., Enke, B.L., Merline, W.J., Asphaug, E., Richardson, D.C., Leinhardt, Z.M., 2004. Icarus 170, 243–257]. The spherical basalt projectiles ...

متن کامل

Resolving Ambiguities in Shape and Pole Models of 832 Karin

The Karin family is a main-belt family of newborn asteroids, resulting from a collision 5.8 ±0.2 Myr ago. The dynamically young age of the Karin family makes it an ideal candidate for study of the timescales of several post-formational processes, including YORP thermal effects. As the presumed parent body of the Karin family, 832 Karin is especially of interest in the study. Currently, the aste...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006